Skip to main content

Organic pesticides to provide natural protection for endangered crops

Sustainable agriculture
vineyard field
Publication date:

Some vitally important European crops like vines and olives are being devastated by disease. Scientists are searching for biological replacements for chemical pesticides to improve crop and human health.

The threat to agriculture from invasive species is huge. The United Nations (UN) estimates that plant disease costs the world’s economy over €200 billion per year, with 20-40% of crop production lost to pests.

‘The economic loss from invasive species is immense. If we took no action, there would be a huge amount of food insecurity, not only across the EU but across the globe,’ said Dr. Hikmate Abriouel, professor of microbiology at Universidad de Jaén in Spain’s Andalucía.

With the stakes so high, it’s easy to understand why the agricultural sector is one of the largest users of chemicals worldwide.

The economic loss from invasive species is immense.

Dr. Hikmate Abriouel, Universidad de Jaén

The question of food security is uppermost these days. But, as Dr. Abriouel explains, our growing reluctance to use chemicals in agriculture adds a layer of complication to farming.

‘There was a time when it was normal to rely on powerful pesticides to treat agricultural land,’ she said. ‘But now we know that a chemical designed to kill a living organism is likely to impact other biological systems negatively.’

Spraying crops with synthetic compounds has adverse impacts on people, farm animals, wildlife, pollinators like bees and other living things that play an essential role in the ecosystem. The chemical runoff also damages the land and water.

Pollution risk

Pesticide pollution causes risk to farmland from the chemical residues that leach into water supplies.

Some synthetic pesticides have been linked to human diseases like cancer, diseases of the immune system and respiratory illnesses.

Farmers who work with pesticides are particularly vulnerable to side effects, with an estimated 44% of farmworkers worldwide experiencing at least one incident of acute pesticide poisoning every year.

The EU’s Farm to Fork (F2F) strategy for sustainable food production targets significant reductions in the use of chemical pesticides, fertilisers and antimicrobials and supports an increase in organic farming. Sustainability goals mean biopesticides or biological alternatives to pesticides are required.

‘There is a lot of evidence that replacing chemicals with biopesticides works with nature rather than against it,’ said Dr. Abriouel. Biological solutions benefit soil health and biodiversity too.

Dying vines

In France alone, around 12% of vineyards were unproductive between 2012 and 2017 due to Grape Trunk Disease (GTD) which has been spreading across Europe over the past two decades. A chemical pesticide used to treat vines was banned because it is harmful to human and environmental health.

Our aim is to produce a really effective, totally natural preventive solution to this very serious and very expensive problem.

Dr. Assia Dreux-Zigha, Greencell

The disease results in 50% less productive plants, a decrease in the quality of the wine and the premature death of healthy vines. Worldwide, estimates for the replacement cost of grapevines exceed €1.4 billion per year.

As a response to this blight, CBE JU is funding the multinational BIOBESTicide project, which aims to find a biological solution to GTD. 

‘Our aim is to produce a really effective, totally natural preventive solution to this very serious and very expensive problem,’ said Dr. Assia Dreux-Zigha, who works for the French biotechnology company Greencell and is coordinating the BIOBESTicide research.

The team's research is focused on a specific strain of Pythium oligandrum – a ‘friendly’ fungus that is naturally present in the rhizosphere of many crop plants, including vines. The rhizosphere is the microorganism-rich region of soil directly around a plant’s roots.

P. oligandrum works by destroying parasites directly and inducing plant resistance against further attack. After isolating P. oligandrum in the lab, Greencell and its partners found that under certain conditions, the biopesticide colonised the roots of vines and stimulated the plant’s natural defences against GTD.

In the near future, following trials and safety approval, the BIOBESTicide researchers aim to scale up and field-test their biopesticide in vineyards across different geographical areas.

‘This is a very challenging project, but, when we finish in late-2023, we hope to have a solution that will allow vine plants to survive for their entire natural lifecycles,’ said Dr. Dreux-Zigha.

Undoubtedly, winemakers will raise a glass to this prospect.

Related projects

  • biobesticide_logo_0

    BIOBESTicide

    In order to meet growing demand, modern farming needs to be both productive and reliable. Among a range of measures, this means ensuring that it is...